
1

XML-RPC Client library

Designed for Symbian platform

Adrian Dydecki
Version: 1.0 January 2010

XML-RPC Client library for Symbian platform

2

TABLE OF CONTENTS:

1 INTRODUCTION..3

1.1 INTRODUCTION TO XMLRPCCLIENT.DLL...3

1.2 FEATURES ...3

2 XMLRPCCLIENT.DLL IMPLEMENTATION...4

2.1 CLASS STRUCTURE ..4

2.2 HTTP CONNECTIONS...6

2.3 REPRESENTATION OF THE XML-RPC REQUEST ..8

2.4 REPRESENTATION OF THE XML-RPC RESPONSE...8

3 DEVELOPING XML-RPC CLIENT APPLICATIONS..9

3.1 SENDING REQUEST TO THE SERVER ...11

3.2 GETTING RESPONSE FROM THE SERVER ...11

3.2.1 Handling XML-RPC fault messages ..12

3.3 DEALING WITH ERRORS ...13

4 THE XMLRPCCLIENT.DLL’S API...14

5 SUMMARY ..16

XML-RPC Client library for Symbian platform

3

1 Introduction

This paper describes how to make procedure calls over the Internet using XmlRpcClient

library on Symbian OS.

Information included in this document refers to XML-RPC protocol. XML-RPC is

lightweight protocol for a remote procedure calls. It uses XML to encode its calls and

HTTP as a transport mechanism. More information about XML-RPC can be found in

document “XML-RPC protocol. Requesting remote services”.

1.1 Introduction to XmlRpcClient.dll

XmlRpcClient.dll is C++ implementation of the XML-RPC protocol for the Symbian

platform. It implements client functionality and provides an easy to use API.

The user of this library will use it to build an in-memory representation of a XML-RPC

request, and serialize (encode) that request into XML. Then send the encoded request to

the server via XmlRpcClient’s API. The server will de-serialize the request, call the

appropriate registered method and generate a response. The response will be serialized

into XML and sent back to the client. The client will de-serialize it into memory, and

inform the user about the results via API.

1.2 Features

Main features of the library are:

• an XML-RPC client for accessing XML-RPC services,

• it provides an easy to use API for Symbian developers,

• ideal for small devices like smart phones,

• supports serializing of application's native C and C++ data structures,

• string pools used to reduce string comparison,

• SAX parser used for parsing XML.

XML-RPC Client library for Symbian platform

4

2 XmlRpcClient.dll implementation

The library consists of the following main files:

File name Description

xmlrpcclient.h This file contains definition of a class CXmlRpcClient that

represents a connection to an XML-RPC server.

mxmlrpcclientobserver.h Callback interface to implement in application to be reported

by CXmlRpcClient object about response, status, fault etc.

xmlrpchandler.h

This file contains definition of a class CXmlRpcHanlder that

parse XML-RPC messages returned from server and interface

MXmlRpcHandlerObserver which CXmlRpcClient is

implementing to be notified when parse is finished.

xmlrpcrequest.h This file contains definition of a class that represents XML-

RPC request.

xmlrpcresponse.h This file contains definition of a class that represents XML-

RPC response.

xmlrpcvalue.h This file contains definition of a class that represents XML-

RPC method arguments and results.

xmlrpcutils.h This file contains definition of a utility class for converting

between Unicode strings and UTF8+xml entities.

xmlrpcclientstringtable.st This file contains a static string table specific to the XML-

RPC protocol being used by this library.

Table 1. List of files included in library

Two files not included in the above table, but included in the library,

xmlrpcclientstringtable.h and xmlrpcclientstringtable.cpp are auto generate from

xmlrpcclientstringtable.st by the Symbian tool called stringtable.pl. A string pool is a

Symbian mechanism for storing strings in such a way that makes the comparison of

strings a very fast operation.

2.1 Class structure

All classes are found on XmlRpc namespace, with CXmlRpcClient being a main

class. Figure 1 shows relationships about all the classes.

5

Figure 1. Simplified UML class diagram

6

CXmlRpcClient represents a connection to the server. This class is constructed with

one argument, a pointer to object of class that implements interface

MXmlRpcClientObserver. CXmlRpcClient reports responses from the Server,

faults, and statuses about connection through the supplied

MXmlRpcClientObserver.

2.2 HTTP connections

This library uses the Symbian HTTP client API that offers direct support for HTTP. This

API enables applications to communicate with HTTP servers on the Internet. Use of the

HTTP client API is encapsulated in CXmlRpcClient class. HTTP is required for

exchanging data with the XML-RPC servers.

As the Symbian HTTP client API asynchronously sets up a connection and prepares data

to send, calling of method CXmlRpcClient::CallL(CXmlRpcRequest&

aRequest) is also asynchronous. This has one good reason – it will not block UI.

Figure 2 shows sequence diagram how library is making a call to the XML-RPC server

and informing user application about response, status or faults. Below steps describes

sequence diagram.

1: CXmlRpcCient::NewL Creates new CXmlRpcClient object

2: CXmlRpcCient::SetUriL Sets the address of the XML-RPC host

3: CXmlRpcRequest::NewL Creates new XML-RPC request

4: CXmlRpcClient::CallL Asynchronous call. At this point XmlRpcClient library at

the separate thread is doing all the things needed to connect

to remote server, send request and parse response. User

application is not blocked. When message comes from the

server or an error was occurred during a call, user

application will be informed via appropriate method of

interface MXmlRpcClientObserver.

5:

6:

7:

8: ResponseStatusL HTTP header was received from the server. Informing the

user about status. If all okay, status code 200 OK should be

returned.

opens an HttpConnection, sends an XML-RPC request to the server. Read

HTTP headers from the server.

XML-RPC Client library for Symbian platform

7

9:

10:

11:

12: ResponseReceivedL Inform the user application about response from the Server.

13:

14:

15:

16:

Figure 2. Sequence diagram of requesting remote services.

Reading HTTP body data from the Server and parsing it.

Closing application and deleting CXmlRpcClient.

XML-RPC Client library for Symbian platform

8

If new call to the Server is needed, user application starts from step 4 or step 3 if another

request then previous will be send.

2.3 Representation of the XML-RPC request

XML-RPC request is represented by object of class CXmlRpcRequest. This object is

constructed by the user and has all the information about remote method. As the

CXmlRpcClient::CallL(CXmlRpcRequest&) is asynchronous call, the user

application in some way needs to know to which request server responded. This is done

by providing request ID. Request ID is stored only in client side (this is not send to

server) and should be unique along the application. When application receive response

from the Server, checks for what request this response is by calling RequestId()

method on object of class CXmlRpcResponse.

2.4 Representation of the XML-RPC response

Responses from the server are in XML and need to be parsed. A CParser a part of

Symbian XML framework is used for parsing XML. A SAX parser in this way is more

appropriate as it doesn’t require whole document to be loaded into memory. Parsing is

done in class CXmlRpcHandler. This class sets up object of class

CXmlRpcResponse which is created by object of class CXmlRpcClient.

CXmlRpcResponse contain all the information returned from the Server.

Object of class CXmlRpcResponse is create when the data starts flowing from the

Server back to the client. Figure 2 shows this on sequence 9. Once this object was

constructed it is destroyed only when the user destroy object of the main class

CXmlRpcClient. When new data starts flowing from the Server this object is sets with

new values (it is not constructing anymore).

According to XML-RPC specification XML-RPC response can contain only one XML-

RPC value (object of class CXmlRpcValue). User can obtain pointer to

CXmlRpcValue by calling method CXmlRpcResponse::Result().

XML-RPC Client library for Symbian platform

9

3 Developing XML-RPC Client Applications

When developing GUI application on Symbian a typical structure of application looks

like below [1]:

Figure 3. GUI application structure in Symbian

Figure 3 shows a minimum number of classes that need to be created to build GUI

application on Symbian. The CXmlRpcClient can be placed as a member of class

CExampleAppUi. The following example shows simple definition of this class:

class CExampleAppUi : public CAknAppUi,

 public XmlRpc::MXmlRpcClientObserver

 {

public:

 // constructor and destructor

 CExampleAppUi();

 virtual ~CExampleAppUi();

 void ConstructL();

XML-RPC Client library for Symbian platform

10

Class CExampleAppUi implements also interface MXmlRpcClientObserver so

constructing of CXmlRpcClient can be done as follows:

The final implementation of this library is a DLL so user has to change mmp file to link

to this library.

/*...*/

LIBRARY XmlRpcClient.lib
/*...*/

public: // From CCoeAppUi

 void HandleCommandL(TInt aCommand);

public: // From XmlRpc::MXmlRpcClientObserver

 void ResponseStatusL(TInt aStatusCode, const TDesC& aStatusText);

 void ResponseReceivedL(XmlRpc::CXmlRpcResponse& aResponse);

 void OnError(TInt aErrorCode);

public:

 /**

 * Call remote methods on the Server.

 */

 void CallL(TInt aRequestId);

 /**

 * Cancel an outstanding transaction.

 */

 void CancelCall();

private:

 void Distance(XmlRpc::CXmlRpcResponse& aResponse);

void LatLngPosition(XmlRpc::CXmlRpcResponse& aResponse);

private: // AppUi owns the XmlRpcClient engine

 XmlRpc::CXmlRpcClient* iXmlRpcClient;

 XmlRpc::CXmlRpcRequest* iXmlRpcRequest;

enum TRequestIds

 {

 ECalculateDistanceRequestId,

 EGetLatLngPositionRequestId

 };

};

void CExampleAppUi::ConstructL()

 {

 iXmlRpcClient = CXmlRpcClient::NewL(*this);

 // server address and port number

 _LIT(KXmlRpcServerHost, "http://localhost:8080");

 iXmlRpcClient->SetUriL(KXmlRpcServerHost);

 }

XML-RPC Client library for Symbian platform

11

3.1 Sending request to the server

Sending request to the server is done in method CallL of class CExampleAppUi. The

following example demonstrates how to create request and call remote server:

First we delete previous request. Then we create new request with the request Id given in

the argument. When new XML-RPC request is created user application invoke

CallL(CXmlRpcRequest&) on CXmlRpcClient object.

3.2 Getting response from the server

Getting response from the Server is done in two methods. One is ResponseStatusL

and second is ResponseReceivedL. In first method as we know from the chapter 2.2

“HTTP connections” library inform user application about the HTTP status we got from

server. In the second method, we will get the object of class CXmlRpcResponse which

represent XML-RPC response. The following example demonstrates how to get response

from the remote server:

void CExampleAppUi::CallL(TInt aRequestId)

 {

 delete iXmlRpcRequest;

 iXmlRpcRequest = NULL;

 switch (aRequestId)

 {

 case ECalculateDistanceRequestId

 iXmlRpcRequest = CXmlRpcRequest::NewL(

 _L("server.calculateDistance"),

 ECalculateDistanceRequestId);

 break;

 }

 if (iXmlRpcRequest)

 {

 // call remote method using XmlRpcClient Engine DLL

 iXmlRpcClient->CallL(*iXmlRpcRequest);

 }

 }

XML-RPC Client library for Symbian platform

12

3.2.1 Handling XML-RPC fault messages

When XML-RPC fault message arrive from the Server to user application,

ResponseReceivedL(CXmlRpcResponse& aRespone) is called. Then inside

this method user have to check if response is fault response. By calling ErrorCodeL()

and ErrorMsg() user can get status code and error message. The following example

demonstrates how to check response:

void CExampleAppUi::ResponseStatusL(TInt aStatusCode, const TDesC&

aStatusText)

 {

 iMainContainerView->RemoveXmlRpcCallWaitDialogL();

 // XmlRpc HTTP response should always have status code 200.

 // Other codes are treated as errors.

 if (aStatusCode != 200)

 {

 iMainContainerView->RunGlobalWarningNoteL(&aStatusText);

 }

 }

void CExampleAppUi::ResponseReceivedL(CXmlRpcResponse& aResponse)

 {

 if (aResponse.IsFaultResponse())

 {

 // Handling fault response

 return;

 }

 switch (aResponse.RequestId())

 {

 case ECalculateDistanceRequestId:

 // Do something with results

 Distance(aResponse);

 break;

 }

 }

void CExampleAppUi::ResponseReceivedL(CXmlRpcResponse& aResponse)

 {

 if (aResponse.IsFaultResponse())

 {

 TBuf<KFaultResponseMaxLength> respBuf;

 respBuf.Format(KErrFaultResponseFormat,

 aResponse.ErrorCodeL(),

 &aResponse.ErrorMsgL());

 RunGlobalWarningNoteL(&respBuf);

 }
 }

XML-RPC Client library for Symbian platform

13

3.3 Dealing with errors

If something went wrong, other then XML-RPC fault message or system errors like out-

of memory, than library will call OnError(TInt aErrorCode) passing error code.

This method is called every time when an error was occurred during the call, a failure occurs if

the sever does not respond at all. Also called when error occurred while parsing XML-RPC

responses from the server.

This method will not be called when XML-RPC fault messages are received. This type of

XML-RPC messages are reported through the ResponseReceivedL() method as

mentioned on previous chapter.

XML-RPC Client library for Symbian platform

14

4 The XmlRpcClient.dll’s API

Class Method Description

NewL Creates the new instance of the CXmlRpcClient class.

NewLC Creates the new instance of the CXmlRpcClient class, but

also pushes instance to Cleanup Stack.

Version Gets the version of the CXmlRpcClient library.

SetUriL
Sets the uri. The address of the XML-RPC host. The port

must be specified as well. If nothing is specified the

connection is made to localhost on the default port 8080.

CallL

It opens an HttpConnection on the URL given by the

SetUriL method and sends an XML-RPC request to the

server. This method is asynchronous call in a separate

thread and reporting responses, faults, and statuses through

the supplied MXmlRpcClientObserver.

C
X
m
l
R
p
c
C
l
i
e
n
t

Cancel Cancel an outstanding transaction.

ResponseStatusL
Called by the CXmlRpcClient when a HTTP headers was

received from the server. When all okay, aStausCode

contains code 200 and aStatusText contains text "OK".

ResponseReceivedL Called by the CXmlRpcClient when a response was

received from the server.

M
X
m
l
R
p
c
C
l
i
e
n
t
O
b
s
e
r
v
e
r

OnError

Called by the CXmlRpcClient when an error was occured

during the call. Remote errors are transported as XML-RPC

faults and are reported through the ResponseReceivedL().A

failure occurs if the sever does not respond at all or returns

a standard HTTP error code. Also called when error

occured while parsing XML-RPC responses from the

server.

NewL
Creates new instance of this class with the name of the

method to call and helper id only for client side to help

recognize request sent to the server.

NewLC Like previous method, but also pushes instance to Cleanup

Stack.

C
X
m
l
R
p
c
R
e
q
u
e
s
t

AddParam Adds XML-RPC param (an object of CXmlRpcValue) to

XmlRpc request message.

XML-RPC Client library for Symbian platform

15

Class Method Description

 Id Return id of the request given in the NewL or NewLC

methods

NewL

Creates new instance of this class. This object is

constructed by CXmlRpcClient. Copy constructor or

assignment operator are not supported. This object stays

valid unless new object from the server arrive.

NewLC Like previous method, but also pushes instance to Cleanup

Stack.

IsFaultResponse Check if returned response from server is fault response.

ErrorCodeL Gets the error code reported by the remote XML-RPC

server.

ErrorMsgL Gets the error message reported by the remote XML-RPC

server.

Result Gets the result returned from server.

C
X
m
l
R
p
c
R
e
s
p
o
n
s
e

RequestID Gets the request Id for which the response is.

XML-RPC Client library for Symbian platform

16

5 Summary

This paper has presented an overview of the XmlRpcClient library and demonstrated how

to send XML-RPC request to the Server and how to receive and interpret XML-RPC

response returned from the Server.

This library has been designed to do minimum to communicate with remote servers and

call remote methods on that servers. This is full implementation of the XML-RPC

protocol and can be used as communication layer in any Symbian applications.

XML-RPC Client library for Symbian platform

17

Literature

[1]. “S60 Programming. A tutorial guide”, Wiley, 2007

[2]. "Developing series S60 Application”, Addison Wesley, March 01 2004

